Extensions 1→N→G→Q→1 with N=He3 and Q=C22⋊C4

Direct product G=N×Q with N=He3 and Q=C22⋊C4
dρLabelID
C22⋊C4×He372C2^2:C4xHe3432,204

Semidirect products G=N:Q with N=He3 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
He3⋊(C22⋊C4) = C32⋊D6⋊C4φ: C22⋊C4/C2D4 ⊆ Out He3366He3:(C2^2:C4)432,238
He32(C22⋊C4) = C22⋊(He3⋊C4)φ: C22⋊C4/C22C4 ⊆ Out He3366He3:2(C2^2:C4)432,279
He33(C22⋊C4) = C62.4D6φ: C22⋊C4/C22C22 ⊆ Out He372He3:3(C2^2:C4)432,97
He34(C22⋊C4) = C62.5D6φ: C22⋊C4/C22C22 ⊆ Out He372He3:4(C2^2:C4)432,98
He35(C22⋊C4) = C62.21D6φ: C22⋊C4/C2×C4C2 ⊆ Out He372He3:5(C2^2:C4)432,141
He36(C22⋊C4) = C62.31D6φ: C22⋊C4/C2×C4C2 ⊆ Out He372He3:6(C2^2:C4)432,189
He37(C22⋊C4) = C623C12φ: C22⋊C4/C23C2 ⊆ Out He372He3:7(C2^2:C4)432,166
He38(C22⋊C4) = C624Dic3φ: C22⋊C4/C23C2 ⊆ Out He372He3:8(C2^2:C4)432,199


׿
×
𝔽